Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xenobiot ; 13(4): 529-543, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37873811

RESUMO

The cell wall of Candida yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes-canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition, inorganic polyphosphate (polyP) was identified in Candida maltosa canals. The aim of the work was a comparative study of the features of cell walls and extracellular structures in yeast C. maltosa, C. albicans and C. tropicalis with special attention to inorganic polyphosphates as possible part of these structures when grown on the widely used xenobiotic hexadecane (diesel fuel). Fluorescence microscopy with DAPI has shown an unusual localization of polyP on the cell surface and in the exovesicles in the three yeast species, when growing on hexadecane. Electron-scanning microscopy showed that the exovesicles were associated with the cell wall and also presented in the external environment probably as biofilm components. Treatment of hexadecane-grown cells with purified Ppx1 polyphosphatase led to the release of phosphate into the incubation medium and the disappearance of polyP in vesicles and cell wall observed using microscopic methods. The results indicate the important role of polyP in the formation of extracellular structures in the Candida yeast when consuming hexadecane and are important for the design of xenobiotic destructors based on yeast or mixed cultures.

2.
Biochemistry (Mosc) ; 88(1): 152-161, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068877

RESUMO

Inorganic polyphosphates (polyP), according to literature data, are involved in the regulatory processes of molecular complex of the Saccharomyces cerevisiae cell wall (CW). The aim of the work was to reveal relationship between polyP, acid phosphatase Pho3p, and the major CW protein, glucanosyltransglycosylase Bgl2p, which is the main glucan-remodelling enzyme with amyloid properties. It has been shown that the yeast cells with deletion of the PHO3 gene contain more high molecular alkali-soluble polyP and are also more resistant to exposure to alkali and manganese ions compared to the wild type strain. This suggests that Pho3p is responsible for hydrolysis of the high molecular polyP on the surface of yeast cells, and these polyP belong to the stress resistance factors. The S. cerevisiae strain with deletion of the BGL2 gene is similar to the Δpho3 strain both in the level of high molecular alkali-soluble polyP and in the increased resistance to alkali and manganese. Comparative analysis of the CW proteins demonstrated correlation between the extractability of the acid phosphatase and Bgl2p, and also revealed a change in the mode of Bgl2p attachment to the CW of the strain lacking Pho3p. It has been suggested that Bgl2p and Pho3p are able to form a metabolon or its parts that connects biogenesis of the main structural polymer of the CW, glucan, and catabolism of an important regulatory polymer, polyphosphates.


Assuntos
Fosfatase Ácida , Glucana Endo-1,3-beta-D-Glucosidase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Parede Celular/metabolismo , Glucanos/metabolismo , Manganês/metabolismo , Polímeros , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo
3.
Biochemistry (Mosc) ; 86(Suppl 1): S96-S108, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33827402

RESUMO

Inorganic polyphosphates (polyP) are the linear polymers of orthophosphoric acid varying in the number of phosphate residues linked by the energy-rich phosphoanhydride bonds. PolyP is an essential component in living cells. Knowledge of polyP metabolizing enzymes in eukaryotes is necessary for understanding molecular mechanisms of polyP metabolism in humans and development of new approaches for treating bone and cardiovascular diseases associated with impaired mineral phosphorus metabolism. Yeast cells represent a rational experimental model for this research due to availability of the methods for studying phosphorus metabolism and construction of knockout mutants and strains overexpressing target proteins. Multicomponent system of polyP metabolism in Saccharomyces cerevisiae cells is presented in this review discussing properties, functioning, and practical significance of the enzymes involved in the synthesis and degradation of this important metabolite.


Assuntos
Polifosfatos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Springerplus ; 1: 18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23961349

RESUMO

The cellobiose lipid of Cryptococcus humicola, 16-(tetra-O-acetyl-ß-cellobiosyloxy)-2-hydroxyhexadecanoic acid, is a natural fungicide. Sensitivity of the cells of Saccharomyces cerevisiae to the fungicide depends on a carbon source. Cellobiose lipid concentrations inducing the leakage of potassium ions and ATP were similar for the cells grown in the medium with glucose and ethanol. However, the cells grown on glucose and ethanol died at 0.05 mg ml(-1) and 0.2 mg ml(-1) cellobiose lipid, respectively. Inorganic polyphosphate (PolyP) synthesis was 65% of the control with 0.05 mg ml(-1) cellobiose lipid during cultivation on ethanol. PolyP synthesis was not observed during the cultivation on glucose at the same cellobiose lipid concentration. The content of longer-chain polyP was higher during cultivation on ethanol. We speculate the long-chained polyP participate in the viability restoring of ethanol-grown cells after treatment with the cellobiose lipid.

5.
FEMS Yeast Res ; 8(6): 877-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18647178

RESUMO

The cells of Saccharomyces cerevisiae accumulate inorganic polyphosphate (polyP) when reinoculated on a phosphate-containing medium after phosphorus starvation. Total polyP accumulation was similar at cultivation on both glucose and ethanol. Five separate fractions of polyP: acid-soluble fraction polyP1, salt-soluble fraction polyP2, weakly alkali-soluble fraction polyP3, alkali-soluble fraction polyP4, and polyP5, have been obtained from the cells grown on glucose and ethanol under phosphate overplus. The dynamics of polyP fractions depend on a carbon source. The accumulation rates for fractions polyP2 and polyP4 were independent of the carbon source. The accumulation rates of polyP1 and polyP3 were higher on glucose, while fraction polyP5 accumulated faster on ethanol. As to the maximal polyP levels, they were independent of the carbon source for fractions polyP2, polyP3, and polyP4. The maximal level of fraction polyP1 was higher on glucose than on ethanol, but the level of fraction polyP5 was higher on ethanol. It was assumed that accumulation of separate polyP fractions has a metabolic interrelation with different energy-providing pathways. The polyphosphate nature of fraction polyP5 was demonstrated for the first time by (31)P nuclear magnetic resonance spectroscopy, enzymatic assay, and electrophoresis.


Assuntos
Carbono/química , Etanol/metabolismo , Glucose/metabolismo , Polifosfatos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Carbono/metabolismo , Meios de Cultura , Etanol/farmacologia , Glucose/farmacologia , Glicólise , Compostos Inorgânicos/metabolismo , Espectroscopia de Ressonância Magnética , Oxigênio/metabolismo , Oxigênio/farmacologia , Fosfatos/metabolismo , Fosforilação , Polifosfatos/química , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...